skip to main content


Search for: All records

Creators/Authors contains: "Redaelli, Elena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Prestellar cores represent the initial conditions in the process of star and planet formation. Their low temperatures (<10 K) allow the formation of thick icy dust mantles, which will be partially preserved in future protoplanetary disks, ultimately affecting the chemical composition of planetary systems. Previous observations have shown that carbon- and oxygen-bearing species, in particular CO, are heavily depleted in prestellar cores due to the efficient molecular freeze-out onto the surface of cold dust grains. However, N-bearing species such as NH 3 and, in particular, its deuterated isotopologues appear to maintain high abundances where CO molecules are mainly in the solid phase. Thanks to ALMA, we present here the first clear observational evidence of NH 2 D freeze-out toward the L1544 prestellar core, suggestive of the presence of a “complete depletion zone” within a ≃1800 au radius, in agreement with astrochemical prestellar core model predictions. Our state-of-the-art chemical model coupled with a non-LTE radiative transfer code demonstrates that NH 2 D becomes mainly incorporated in icy mantles in the central 2000 au and starts freezing out already at ≃7000 au. Radiative transfer effects within the prestellar core cause the NH 2 D(1 11 − 1 01 ) emission to appear centrally concentrated, with a flattened distribution within the central ≃3000 au, unlike the 1.3 mm dust continuum emission, which shows a clear peak within the central ≃1800 au. This prevented NH 2 D freeze-out from being detected in previous observations, where the central 1000 au cannot be spatially resolved. 
    more » « less
  2. null (Ed.)
    Context. Stars form in cold dense cores showing subsonic velocity dispersions. The parental molecular clouds display higher temperatures and supersonic velocity dispersions. The transition from core to cloud has been observed in velocity dispersion, but temperature and abundance variations are unknown. Aims. We aim to measure the temperature and velocity dispersion across cores and ambient cloud in a single tracer to study the transition between the two regions. Methods. We use NH 3 (1,1) and (2,2) maps in L1688 from the Green Bank Ammonia Survey, smoothed to 1′, and determine the physical properties by fitting the spectra. We identify the coherent cores and study the changes in temperature and velocity dispersion from the cores to the surrounding cloud. Results. We obtain a kinetic temperature map extending beyond dense cores and tracing the cloud, improving from previous maps tracing mostly the cores. The cloud is 4–6 K warmer than the cores, and shows a larger velocity dispersion (Δ σ v = 0.15–0.25 km s −1 ). Comparing to Herschel -based dust temperatures, we find that cores show kinetic temperatures that are ≈1.8 K lower than the dust temperature, while the gas temperature is higher than the dust temperature in the cloud. We find an average p-NH 3 fractional abundance (with respect to H 2 ) of (4.2 ± 0.2) × 10 −9 towards the coherent cores, and (1.4 ± 0.1) × 10 −9 outside the core boundaries. Using stacked spectra, we detect two components, one narrow and one broad, towards cores and their neighbourhoods. We find the turbulence in the narrow component to be correlated with the size of the structure (Pearson- r = 0.54). With these unresolved regional measurements, we obtain a turbulence–size relation of σ v,NT ∝ r 0.5 , which is similar to previous findings using multiple tracers. Conclusions. We discover that the subsonic component extends up to 0.15 pc beyond the typical coherent boundaries, unveiling larger extents of the coherent cores and showing gradual transition to coherence over ~0.2 pc. 
    more » « less
  3. ABSTRACT The role played by magnetic field during star formation is an important topic in astrophysics. We investigate the correlation between the orientation of star-forming cores (as defined by the core major axes) and ambient magnetic field directions in (i) a 3D magnetohydrodynamic simulation, (ii) synthetic observations generated from the simulation at different viewing angles, and (iii) observations of nearby molecular clouds. We find that the results on relative alignment between cores and background magnetic field in synthetic observations slightly disagree with those measured in fully 3D simulation data, which is partly because cores identified in projected 2D maps tend to coexist within filamentary structures, while 3D cores are generally more rounded. In addition, we examine the progression of magnetic field from pc to core scale in the simulation, which is consistent with the anisotropic core formation model that gas preferably flows along the magnetic field towards dense cores. When comparing the observed cores identified from the Green Bank Ammonia Survey and Planck polarization-inferred magnetic field orientations, we find that the relative core–field alignment has a regional dependence among different clouds. More specifically, we find that dense cores in the Taurus molecular cloud tend to align perpendicular to the background magnetic field, while those in Perseus and Ophiuchus tend to have random (Perseus) or slightly parallel (Ophiuchus) orientations with respect to the field. We argue that this feature of relative core–field orientation could be used to probe the relative significance of the magnetic field within the cloud. 
    more » « less